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ABSTRACT

The existence of nonsymmetric generalized half-band low-
pass and highpass FIR filters with maximally flat magni-
tude and group delay characteristics is proved. Like their
linear-phase counterparts, approximately half of the im-
pulse response coefficients of these generalized half-band fil-
ters are exactly zero. The magnitude response of the filters
is not a monotone function in general. However, the fil-
ters can be designed to yield improved magnitude response
characteristics compared to the linear-phase maximally flat
filters. A closed-form formula for the transfer function of
the filters is also derived using Bernstein polynomials. The
filters may find applications in multirate and wavelet signal
processing.

1. INTRODUCTION

A system is called a generalized half-band filter if any one
of its two polyphase components is of the form cz−n [2]. As
a result, approximately half of the impulse response coef-
ficients of the generalized half-band filters are exactly zero
regardless of the linearity of their phase response. In this
paper we identify the class of generalized half-band maxi-
mally flat (GHBMF) FIR filters. These are nonsymmetric
counterparts of the well-known linear-phase maximally flat
half-band filters [3]. The frequency response of GHBMF
filters approximates an ideal complex-valued function in a
maximally flat sense at the frequencies ω = 0 and ω = π.
The ideal frequency response is chosen to be a linear-phase
function with integer-valued phase slope in the passband.
This will ensure that the group delay of the resulting filter
approximates an integer number of samples in the pass-
band. An approximation problem is formed by incorporat-
ing these requirements and imposing a further constraint
that the degrees of flatness at the two endpoint frequencies
take specific values. We will show that under these con-
straints, the resulting filter is a generalized half-band sys-
tem having a maximally flat magnitude response and group
delay. Specifically, we will prove that all impulse response
coefficients with odd indices are equal to zero except one co-
efficient whose value is equal to 1

2 . A closed-from expression
for the transfer function of GHBMF filters is also derived.
This is done using a Theorem that relates the generalized
half-band property, the number of zeros of the transfer func-
tion at z = −1 and the flatness of the magnitude response.
The Bernstein polynomials [7, 8] are used to express the
transfer function in the closed form.

The proposed approximation method does not distin-
guish between the magnitude response and group delay.

However, it turns out that both the magnitude response
and the group delay approximate the ideal response in a
maximally flat sense. Nonsymmetric FIR filters with max-
imally flat magnitude response and group delay have been
studied by Baher [4] and, Selesnick and Burrus [5]. Baher
derived a closed-form solution for the case where the magni-
tude response and the group delay have degrees of flatness
that differ at most by one. Selesnick and Burrus general-
ized those filters by subjecting the magnitude and group
delay responses to differing number of flatness constraints.
The above approaches are concerned with the general case
where the group delay may take arbitrary real values (in-
teger or non-integer) at ω = 0, or the degrees of flatness at
the two endpoint frequencies may be set to arbitrary num-
bers. The existence of half-band solutions is not considered
in those approaches. This paper not only proves the exis-
tence of such solutions, but also gives a very simple formula
for their transfer functions.

2. FORMULATION AND STATEMENT OF
THE PROBLEM

Let H(z) =
∑N

i=0
hiz

−i denote the transfer function of the
filter, where N(= 2M) is an even integer. H(z) is a system
with nonsymmetric impulse response in general and can be
decomposed into the sum of a symmetric type 1 and an
anti-symmetric type 2 linear-phase subsystem, i.e.,

H(z) = Hs(z) +Ha(z), (1)

where

Hs(z) =
1
2

(
H(z) + z−NH(z−1)

)
,

Ha(z) =
1
2

(
H(z)− z−NH(z−1)

)
.

The frequency response of the filter is given by

H(ejω) = e−jMω (Hs0 (ω) + jHa0 (ω)) , (2)

where [2]

Hs0(ω) =

M∑
n=0

an cos(nω),

Ha0(ω) = sinω

M−1∑
n=0

bn cos(nω).

We define the ideal frequency response

I(ω) =

{
e−j(M+d)ω . . . ω ∈ Passband
0 . . . ω ∈ Stopband

(3)
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where d is a positive or negative integer. In this paper, a
maximally flat approximation to I(ω) is denoted as

H(ejω)
0,L0≈ e−j(M+d)ω,

H(ejω)
π,Lπ≈ 0.

(4)

The notation L.H.S.
ω0,Lω0≈ R.H.S. denotes that L.H.S. −

R.H.S. has Lω0 − 1 vanishing derivatives at ω = ω0, i.e.,

L.H.S. − R.H.S. = O
(
(ω − ω0)

Lω0
)

.

The term O
(
(ω − ω0)

Lω0
)
represents omitted higher-order

terms in the power series expansion of L.H.S. − R.H.S.
about ω0.

Equation (4) is equivalent to

{
Hs0(ω) − cos(dω)

0,L0,s

≈ 0,

Hs0(ω)
π,Lπ,s

≈ 0,{
Ha0(ω) + sin(dω)

0,L0,a

≈ 0,

Ha0(ω)
π,Lπ,a

≈ 0.

(5)

To simplify mathematical derivations, we use the well-known
transformation

x = cosω

and set
L0,s = Lπ,s = 2P
L0,a = Lπ,a = 2Q

(6)

to arrive at the more specific formulation{
Hs0(x)

+1,P
≈ Td(x),

Hs0(x)
−1,P
≈ 0,{

Ha0(x)
+1,Q
≈ −

√
1 − x2Ud−1(x),

Ha0(x)
−1,Q
≈ 0.

(7)

in the x domain. Here Td(x) represents the dth order Cheby-
shev polynomial of the first kind and Ud−1(x) is the d−1th
order Chebyshev polynomial of the second kind [6]. Con-
sidering the power series expansion of cos(ω) at ω = 0 and
ω = π, it can be easily understood that a solution to (5)
in the frequency domain is equivalent to a solution to (7)
in the x domain. To obtain a maximally flat solution, all
available degrees of freedom should be used to maximize
the degrees of flatness P and Q. Notice that the degrees
of flatness at x = 1 and x = −1 are identical in each sub-
problem. The relationship between N and the degrees of
flatness will be clarified later.

3. SOLUTION AND ITS POLYPHASE
DECOMPOSITION

In this section, we first derive a general analytic solution
to the approximation problem (7). We then prove that this
solution corresponds to a generalized half-band filter.

3.1. General Analytic Solution

To determine the actual form of functionsHs0(x) andHa0(x),
we take an approach based on decomposition of polynomials
into even and odd power terms. To this end, we write

Hs0(x) = Hse(x) +Hso(x)

Ha0(x) =
√
1 − x2 (Hae(x) +Hao(x))

Hse(x) and Hae(x) are even polynomials, while Hso(x) and
Hao(x) are odd polynomials. Substituting the above re-
lation into (7) and solving the resulting linear system of
equations, we find that

Hse(x)
+1,P
≈ 1

2
Td(x),

Hso(x)
+1,P
≈ 1

2Td(x),

Hae(x)
+1,Q
≈ − 1

2Ud−1(x),

Hao(x)
+1,Q
≈ − 1

2Ud−1(x).

(8)

In this paper we consider the solution to (8) under the
constraint that |d| < M , and M+d being an odd integer. In
this case, we can always obtain exact solutions (with infinite
degrees of flatness) for two of the four approximations in (8).
Specifically, for odd M the solution is of the form

Hse(x) =
1
2Td(x),

Hso(x) =
∑M−1

2
i=0 c

(so)
2i+1x

2i+1,

Hae(x) =
∑M−1

2
i=0 c

(ae)
2i x2i,

Hao(x) = − 1
2
Ud−1(x),

(9)

and for even M we find that

Hse(x) =
∑M

2
i=0 c

(se)
2i x2i,

Hso(x) =
1
2Td(x),

Hae(x) = − 1
2
Ud−1(x),

Hao(x) =
∑M

2 −1

i=0 c
(ao)
2i+1x

2i+1.

(10)

The coefficients c
(so)
2i+1, c

(ae)
2i , c

(se)
2i , c

(ao)
2i+1, should be chosen

so that the maximum number of vanishing derivatives be
obtained when the polynomials are substituted to the left-
hand sides of (8). This can be done by forming and solving
systems of linear equations with the corresponding coeffi-
cients as unknowns. An explicit solution is given in Sec-
tion 4.

3.2. Polyphase Decomposition of Solution

Using the relation x = z+z−1

2
, the overall transfer function

for odd M is expressed as

H(z) =z−M


 1

2
Td(

z+z−1

2
) +

M−1
2∑

i=0

c
(s0)
2i+1

(
z + z−1

2

)2i+1

+

z−z−1

2


M−1

2∑
i=0

c
(ae)
2i

(
z + z−1

2

)2i

− 1

2
Ud−1(

z + z−1

2
)






Simple algebraic manipulations reveal that

H(z) =
1

2
z−M−d + E(z2) (11)
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Table 1: Degrees of flatness at ω = 0 and ω = π for magnitude response and group delay of GHBMF filters.

M |H(ω)|ω=0 τ (ω)ω=0 |H(ω)|ω=π τ(ω)ω=π

Even 1 +O(ωM+2) M + d +O(ωM ) 0 +O
(
(ω − π)M+1

)
τ (π) +O

(
(ω − π)2

)
Odd 1 +O(ωM+1) M + d +O(ωM+1) 0 +O

(
(ω − π)M+1

)
τ(π) +

(
O(ω − π)2

)

where d is an even integer and E(z2) is an even polynomial
of degree 2M in z−1. In other words, H(z) is a generalized
half-band filter. For even M , it can be shown in a similar
manner that the the transfer function can be decomposed
as (11), where d is an odd integer. In summary, we proved
that a solution to (7) gives rise to a generalized half-band
filter provided that the parity of M +d is odd and |d| < M .
It is interesting to note that half-band solutions do not exist
when |d| ≥ M or M + d is an even number.

3.3. Relation to Linear-Phase Filters

The class of GHBMF filters includes the linear-phase max-
imally flat filters as a special case. For linear-phase maxi-
mally flat filters, M is an odd number and d = 0. It can
be easily verified that under this condition, the polynomi-
als Hae(x) and Ha0(x) are identically zero, and thus the
solution is a type 1 linear-phase filter.

3.4. Magnitude Response and Group Delay

The degrees of flatness of the magnitude response and
group delay of GHBMF filters are given in Table 1. Unlike
linear-phase maximally flat filters the nonlinear-phase coun-
terparts do not possess a monotone magnitude response
in general. However, monotone characteristics may be ob-
tained for some special values of parameters M and d. Fig-
ure 1 depicts the frequency responses of five GHBMF filters
of order N = 38 (d = 0,±2,±4). Note that the magnitude
response depends on the absolute value of d, while the group
delay is also dependent on the signature of d. The group
delay approximation is exact for the linear-phase case cor-
responding to d = 0.

Our study shows that for a fixed filter length, the mag-
nitude response exhibits larger overshoots in the passband
as the value of |d| increases. The overshoot is negligible
for small values of |d| and may not be tolerable when |d| is
relatively large with respect to M . However, improvement
in frequency selectivity compared to the linear-phase case
can be observed.

4. CLOSED-FORM SOLUTION

The following Theorem can be proved.
Theorem Any generalized real half-band filter of order
N = 2M with M +1 multiple zeros at z = −1 is a GHBMF
filter.
This Theorem states that for a generalized half-band trans-
fer function, having M+1 zeros at z = −1 guarantees max-
imum possible number of vanishing derivatives at ω = 0.
In other words, like the linear-phase case, we do not need
to impose flatness constraints on both passband and stop-
band; constructing a flat stopband is sufficient. This prop-

erty does not generally hold for other optimality criteria
regarding generalized half-band filters.

Using the above Theorem and Bernstein polynomials, a
closed-form expression for the transfer function of GHBMF
filters can be derived. Let

H(z) =

N∑
i=0

bi

(
N

i

)(
1 + z−1

2

)i(
1 − z−1

2

)N−i

(12)

where
(

N
i

)
denotes the binomial coefficients. The right-

hand side of (12) is called the Bernstein form of the transfer
function. The coefficients bi should be chosen so that

(a) H(z) has M + 1 zeros at z = −1.
(b) H(z) is a generalized half-band filter, i.e.,

H(z) − H(−z) = z−M−d.

To satisfy condition (a), we simply set

bi = 0, i = 0, . . . ,M. (13)

Condition (b) should be used to determine the remaining
Bernstein coefficients. We have

H(z)− H(−z) =
N∑

i=0

(bi − bN−i)

(
N

i

)(
1 + z−1

2

)i(
1 − z−1

2

)N−i

.

On the other hand, it can be proved that

z−M−d =

N∑
i=0

(
i∑

j=0

(−1)M+d−i+j
(

M−d
j

)(
M+d
i−j

)
(

N
i

)
)

(
N

i

)(
1 + z−1

2

)i(
1 − z−1

2

)N−i

.

Thus we find that

bi =

i∑
j=0

(−1)M+d−i+j
(

M−d
j

)(
M+d
i−j

)
(

N
i

) ,

i = M + 1,M + 2, . . . , 2M(= N).

(14)

Consequently, the transfer function can be expressed as

HM,d(z) =
(

1+z−1

2

)M+1

M−1∑
i=0

ci+M+1

(
1 + z−1

2

)i(
1− z−1

2

)M−1−i (15)

where

ci =

i∑
j=0

(−1)M+d−i+j

(
M − d

j

)(
M + d

i − j

)
. (16)
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Figure 1: Frequency responses for N = 38, d = 0,±2,±4. (a) Magnitude response. (b) Passband details. (c) Group delay.

Table 2: Impulse response {hi} of GHBMF filters.

N d {hi} i = 0, . . . , 2M

2 0 { 1
4
, 1

2
, 1

4
}

4 −1 { 3
16

, 1
2
, 3

8
, 0, −1

16
}

6 0 {−1
32

, 0, 9
32

, 1
2
, 9

32
, 0, −1

32
}

6 −2 { 5
32

, 1
2
, 15

32
, 0, −5

32
, 0, 1

32
}

8 −1 { −5
256

, 0, 15
64

, 1
2
, 45

128
, 0, −5

64
, 0, −3

256
}

10 0 { 3
512

, 0, −25
512

, 0, 75
256

, 1
2
, 75

256
, 0, −25

512
, 0, 3

512
}

10 −2 { −7
512

, 0, 105
512

, 1
2
, 105

256
, 0, −35

256
, 0, 21

512
, 0, −3

512
}

Table 3: Coefficients {ci+M+1} of GHBMF filters.

N d {ci+M+1} i = 0, . . . , M − 1

2 0 {1}
4 −1 {2, 1}
6 0 {−3, 0, 1}
6 −2 {5, 4, 1}
8 −1 {−6,−2, 2, 1}
10 0 {10, 0,−5, 0, 1}
10 −2 {−14,−8, 3, 4, 1}

Equation (15) is a closed-form solution of the approxima-
tion problem stated in Sections 2 and 3. It provides a
unified formula for the transfer functions of linear-phase
and nonlinear-phase half-band maximally flat FIR filters.
Application of Bernstein polynomials to derive closed-form
expressions for linear-phase maximally flat filters was first
proposed in [8]. Equation (15), can also be used as an
alternative expression for the linear-phase half-band case
(d = 0). Coefficients of some low order GHBMF filers are
given in Tables 2 and 3.

5. CONCLUSIONS
A class of nonsymmetric half-band maximally flat filter-
s was identified. It was shown that a certain maximal-
ly flat approximation to an ideal frequency response with
linear phase and integral group delay in the passband re-
sults in nonsymmetric half-band FIR filters. The group
delay of GHBMF filters approximates an integer value in
the passband and their magnitude response is maximally
flat at frequencies ω = 0 and ω = π. The filters include
the linear-phase maximally flat filters as a special case and
are parametrized by M , a parameter that is equal to half

of the order of the filter, and d, a parameter that, togeth-
er with M , specifies the group delay at ω = 0.Compared
to the linear-phase counterparts, nonsymmetric GHBMF
filters enjoy narrower transition band-widths and may be
designed to exhibit lower group delay in the passband. The
magnitude response of GHBMF filters is not monotone in
general. This is due to overshoots that occur near pass-
band edge frequencies. The magnitude of the overshoots
is negligible for the cases where |d| is small relative to M ,
and may be large enough to render the filter useless for
larger values of |d|. GHBMF filters provide solutions where
no linear-phase half-band filters exist. For example 5- and
9-tap GHBMF filters with d = ±1 possess monotone mag-
nitude response characteristics and fill the gap among 3-,
7- and 11-tap linear-phase half-band filters. We used Bern-
stein polynomials to derive a closed-form formula for the
transfer function of GHBMF filters.

6. REFERENCES

[1] R. E. Crochiere and L. R. Rabiner, Multirate Digital
Signal Processing. Englewood Cliffs, NJ: Prentice Hall,
1983.

[2] P. P. Vaidyanathan, Multirate Systems and Filter
Banks. Englewood Cliffs, NJ: Prentice Hall, 1993.

[3] C. Gumacos, “Weighting coefficients for certain max-
imally flat nonrecursive digital filters,” IEEE Trans.
Circuits Syst., vol. CAS-25, no. 4, pp. 234–235, 1978.

[4] H. Baher, “FIR digital filters with simultaneous con-
ditions on amplitude and delay,” Electron. Lett., vol.
18, pp. 296–297, 1982.

[5] I. W. Selesnick and S. Burrus, “Maximally flat low-
pass FIR filters with reduced delay,” IEEE Trans. Cir-
cuits Syst. II, vol. 45, no. 1, pp. 53–68, 1998.

[6] T. J. Rivlin, Chebyshev Polynomials: From Approxi-
mation Theory to Algebra and Number Theory, New
York: John Wiley & Sons, Inc., 1990.

[7] G. G. Lorentz, Bernstein Polynomials, New York:
Chelsea, 1986.

[8] L. R. Rajagopal and S. C. Dutta Roy, “Design of
maximally-flat FIR filters using the Bernstein poly-
nomial,” IEEE Trans. Circuits Syst., vol. CAS-34, no.
12, pp. 1587–1590, 1987.

iwa lab



