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Abstract—The family of FIR digital filters with maximally
flat magnitude and group delay response is considered. The
filters were proposed by Baher, who furnished them with an
analytic procedure for derivation of their transfer function. The
contributions of this paper are the following. A simplified formula
is presented for the transfer function of the filters. The equiva-
lence of the novel formula with a formula that is derived from
Baher’s analytical procedure is proved using a modern method for
automatic proof of identities involving binomial coefficients. The
universality of Baher’s filters is then established by proving that
they include linear-phase filters, generalized half-band filters, and
fractional delay systems. In this way, several classes of maximally
flat filters are unified under a single formula. The generating
function of the filters is also derived. This enables us to develop
multiplierless cellular array structures for exact realization of a
subset of the filters. The subset that enjoys such multiplierless
realizations includes linear-phase filters, some nonsymmetric
filters, and generalized halfband filters. A procedure for designing
the cellular array structures is also presented.

Index Terms—FIR digital filters, fractional delay systems, gen-
erating function, interpolation, maximally flat magnitude filters,
multiplierless implementation, systolic arrays.

I. INTRODUCTION

WE START by giving a brief account of explicit formulas
and analytic techniques for derivation of transfer func-

tions of maximally flat FIR digital filters and then clarify the
object of this paper. As is clear from the conventional usage
of the term “maximally flat” in the literature, we are not con-
cerned with explicit formulas for filters that have some of their
degrees of freedom assigned to purposes other than vanishment
of frequency response derivatives. Transfer functions of low-
pass and highpass FIR digital filters of even order with exact
linear phase and maximally flat magnitude response character-
istics are among the most well-known cases of optimal digital
filters with closed-form formulas. The transfer functions can be
expressed using the celebrated formula of Herrmann [1] or other
equivalent formulas [2], [3], [6]. Closed-form formulas are also
available for filters of odd order and bandpass filters as well
[8], [9]. Nonlinear-phase maximally flat FIR filters were first
introduced by Baher [5], who relaxed the constant group delay
requirements of Herrmann’s filters by imposing simultaneous
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flatness constraints on the magnitude and group delay only at
the frequency . This, in turn, resulted in improved tran-
sition bandwidth and controllable group delay at . Al-
though Baher provides a simple procedure for determining the
transfer function, he does not give a compact formula in [5].
Selesnick and Burrus [7] generalized Baher’s approach by sub-
jecting the magnitude and group delay responses to differing
number of flatness constraints. Their approach is based on the
computation of Gröbner bases, while they offer an analytic de-
sign technique for a special case. The passband group delay can
be specified by the designer in both the Baher and the Selesnick
and Burrus approaches. On the other hand, the theory of maxi-
mally flat FIR fractional delay systems, which are also known as
Lagrange interpolators, has been developed independently. Var-
ious approaches toward Lagrange interpolators and other frac-
tional delay systems are listed in [10]. Since the ideal frequency
response of fractional delay systems is of allpass form, the con-
nection between Lagrange interpolators and lowpass maximally
flat filters is not intuitive. Hence, to our knowledge, there have
been no studies in the literature on a possible relation between
the two maximally flat systems.

In this paper, we unify Baher’s nonsymmetric filters, linear-
phase maximally flat filters, and Lagrange interpolators using
a novel compact formula for the transfer function of Baher’s
filters. We develop a simple explicit expression for the class of
FIR systems denoted that contains all the aforemen-
tioned filters. The expression is parametrized by the number
of zeros at , , the order of the system , and a pa-
rameter that is related to the value of group delay at .
We also specify the values of parameters, , and that re-
sult in halfband solutions. The halfband solutions, bearing im-
portant implications for design of regular wavelets, include the
well-known linear-phase halfband filters [4] and the recently de-
veloped nonsymmetric halfband filter [11]. Furthermore, a gen-
erating function is derived for the entire family of filters. The
generating function enables us to develop multiplierless cellular
array structures for filters having integer values of . We
present a versatile cellular array structure for exact multiplier-
less realization of all linear- and nonlinear-phase maximally flat
FIR filters with integer values of .

The rest of the paper is organized as follows. In Section II,
the result of analytic design procedure of Baher is expressed as
a compact formula, and its equivalence with a simpler general
formula is established. In Section III, it is shown that the La-
grange interpolator and linear-phase lowpass solutions are, in
fact, special cases of the general formula. A generating func-
tion for the filters is developed in Section IV, and multiplierless
cellular array realizations for some special cases are also given.
Conclusions are drawn in Section V.
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II. SIMPLIFICATION OF BAHER’S FORMULA

Following the procedure for derivation of the transfer func-
tion of Baher’s th-order maximally flat FIR filters, as de-
scribed in [5], the explicit form of the transfer function can be
written as

(1)

This expression is related to the Bernstein form of the polyno-
mial [12], [13]. The coefficients are given by

(2)

where

(3)

The parameter controls the group delay of the filter
via the relation . Combining the above formulas, the
transfer function becomes

(4)

Once the order of the filter , the number of zeros at ,
, and the value of group delay at , are specified, the

transfer function is uniquely determined by (4). Notations like
will be used throughout this paper to emphasize the

dependence of the filter on the three parameters and provide the
actual parameter values whenever necessary. The closed-form
formula of (4) can be used to compute the impulse response co-
efficients of the filter or the values of in the Bernstein-form
representation (1). However, any attempt to unfold the relation-
ship between Baher’s filters and other maximally flat filters is
hindered by presence of three-fold nested summations in combi-
nation with Gamma functions and binomial coefficients. How-
ever, the expression for can be represented in a simpler form.
First, let us define a new delay parameter

(5)

and a sequence of numbersas

(6)

For noninteger values of, the binomial coefficients involved in
the above expression are evaluated using

(7)

Now we assert the following.
Theorem 1: for all integers .

To establish the equivalence of (2) and our simplified for-
mula (6), we note that both formulas are sums of hypergeo-
metric terms. Recently, a systematic method has been developed
for automatic proof of identities involving binomial coefficients
on computers. The method has its origin in the work of Sister
Mary Celine Fasenmyer, who showed “how recurrences for cer-
tain polynomial sequences could be found algorithmically” (see
[15] and references therein).

Proof: To prove that , we used a computer algebra
package that generates computer proofs of hypergeometric mul-
tisum identities [16]. The package successfully provided a re-
currence relation of the form

(8)

that is satisfied by the formulas for bothand . Furthermore,
it can be easily verified (by hand calculation or a computer al-
gebra system) that and for .
This means that under the initial conditions of and

, , running the above recurrence formula for
, we get a sequence that is identical to the values gener-

ated by and . This completely establishes that for
all integers .

From (6), it can be observed that coefficientstake on ra-
tional values for rational values of. Furthermore

(9)

that is the magnitude of is independent of the sign of. The
plots given in Fig. 1 help us to get a rough grasp of the effect
of parameter , or equivalently, on the magnitude response
and group delay. Unlike linear-phase lowpass filters, a mono-
tonic magnitude response is no longer guaranteed. The plots are
provided for negative values of. Such choices of result in
reduced group delay in the passband. The magnitude response
is invariant to the sign of, and the plots of Fig. 1(a) and (b) are
valid for both positive and negative values of. Invoking (9), we
find that changing the sign ofamounts to reversing the sign of
parameters with odd indexes. In a Bernstein-form representa-
tion, this results in a transfer function of the form ,
whose magnitude response is identical to that of . In short,
we can generally write

Consequently, the group delay satisfies the relation-
ship

The above symmetric relations involving the transfer function
and group delay are desirable conveniences afforded by the
newly defined parameter.

III. U NIVERSALITY OF BAHER’S FILTERS

Having derived the simplified expression

(10)
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(a) (b)

(c)

Fig. 1. (a), (b) Magnitude response and (c) group delay forN = 10,K = 6, d 2 f�2,�1.75,�1.5,�1.25,�1,�0.75,�0.5,�0.25, 0g.

TABLE I
SPECIAL VALUES OF PARAMETERS IN BAHER’S FILTER AND THE FEATURES OFRESULTING SYSTEMS

for the transfer function of Baher’s filters, we are in a position
to establish that for certain choices of the parameters, the for-
mula yields maximally flat linear-phase filters, generalized half-
band filters, or Lagrange interpolators. The use of parameter,
which was introduced in the preceding section, instead of the
original parameter used by Baher, is a matter of preference
to emphasize the symmetry properties discussed in Section II.
Table I presents some special values of the parameters and the
corresponding type of the transfer function. It can be seen that
Baher’s filters include a wide class of maximally flat FIR filters.
The proofs and remarks are provided next.

A. Even,

Setting , the group delay at becomes sam-
ples. This is the same situation as a type I linear-phase filter
of the same order. Here, we show that, in fact, is a
linear-phase filter. Substituting into (6), we have

(11)

As is shown in [14], using the binomial expansion theorem, it
can be easily seen that is the coefficient of the th power of

in the power series expansion of the product

Alternatively, the above product can be expanded as

(12)

This yields the relationship

even

odd.

(13)

Hence, the transfer function can be expressed using the bino-

mial coefficients as in (14), shown at the bottom of the

next page. This means that for , only filters with an
even number of multiple zeros at are obtained. The
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right-hand side of (14) is identical to Miller’s formula for linear-
phase maximally flat filters [2], [6].

B. odd,

Here, we show that for odd values of, the choice of
results in linear phase. This means that Baher’s filters cover

linear-phase maximally flat filters of odd order as well. We show
that is a symmetric polynomial in for all integer
values of . First, note that a Bernstein-form polynomial in

(15)

is symmetric if and only if , odd. This can be readily
verified by subjecting to the condition

(16)

and writing down the resulting set of linear equations for co-
efficients . On the other hand, setting the coefficients with
even indexes to zero results in an antisymmetric polynomial.
Following the same line of reasoning as the preceding subsec-
tion and employing the generalized binomial theorem that holds
for noninteger powers as well, the coefficientsare identified
to be the coefficients of theth power of in the power series
expansion of . This holds, regardless of the parity
of , as long as . Hence, we have

odd (17)

This shows that the resulting maximally flat filter of odd order
satisfies the linear-phase condition (16).

C. Generalized Halfband Filters

The important class of halfband maximally flat filters are
completely covered by Baher’s filters. This includes the well-
known linear-phase case [4] that is a special case of the recently
studied nonsymmetric case [11]. Our simplified formula is iden-
tical to the transfer function of generalized (possibly nonsym-
metric) halfband filters derived in [11] for ,

where is an even integer, andis a positive or negative integer
that should be chosen so that its magnitude is less thanand
the parity of is odd. More precisely, we have [11]

odd even

D. Lagrange Interpolators

The versatility of Baher’s filters may be further appreciated
by considering the case . Absence of a zero at
implies that the resulting system might not be a frequency-se-
lective filter. Here, we show that the system is in fact a Lagrange
interpolator in this case.

As is pointed out in [10], the transfer function of a Lagrange
interpolator of order is the solution to

(18)

In other words, the interpolator should reduce to the trivial in-
teger delay for integer values of delay parameter. We now
show that satisfies the above set of equations if we
set . Specifically, we show the following.

Theorem 2: for in-
teger.

Proof: For integer values of , the value of
is also an integer, and hence, we have

even

odd.

(14)
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Thus, we have proved that is the Lagrange inter-
polator for all real values of . It is noteworthy that represen-
tation of Lagrange interpolators in the Bernstein form using

is a novel expression for these fractional delay sys-
tems.

E. Impulse Response Coefficients

In this subsection, we give an explicit formula for the im-
pulse response coefficients, of the universal
maximally flat lowpass filter . Ex-
panding (10), and after some routine algebraic manipulations,
we get (19), shown at the bottom of the page. The formula gives
numerical values of using the three parameters, , and
. It can be used to design all types of maximally flat systems

listed in Table I.

IV. GENERATING FUNCTION AND MULTIPLIERLESSARRAYS

The object of this part of the paper is to derive a generating
function for the family of filters and then de-
velop multiplierless cellular structures based on it. We will see
that such structures are possible only for special values of
for a given . The general method for generation of cellular
structures from a generating system is discussed elsewhere [17].
However, we provide a step-by-step exposition to the subject for
the sake of self-containment.

A. Generating Function

Consider the family , of Baher’s
filters. The family includes all possible maximally flat FIR fil-
ters of order with fixed group delay parameter. The sim-
plified formula presented in Section II can be directly used to
compute the transfer functions for . Note that for
values of outside the interval , i.e., for , usage of
(10) generally results in a rational transfer function that is not
an FIR system. Now, we can define a generating function of the
form

(20)

for the family of filters. We wish to derive an explicit expression
for . A common trick for derivation of closed forms

for generating functions is evaluation of expressions of the form
. Thus, we continue as

(21)

Using (10) and the definition of , the right-hand side can be
written as

(22)

From the binomial expansion theorem, it can be verified that
the right-hand side of the above equation is the power series
expansion of

Consequently, we obtain (23), shown at the bottom of the page,
which is the closed-form expression for . The gener-
ating function is rational if and only if is an integer.
In that case, the members of the family with , i.e., those
with negative values of , become trivial systems of the form

. For noninteger values of , however, the
members with a negative become IIR systems. In any case,
the focus of this paper is the members whoseparameters are
within the interval .

(19)

(23)
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(a) (b)

(c)

Fig. 2. Signal flowgraph for the familyfH (z), i = 0; � � � ; 6g.

B. Multiplierless Arrays

In the case of rational generating functions, a signal flow-
graph for the family of filters can be obtained by writing down
the difference equations obtained by plugging the spatial unit
impulse signal into the discrete-time system . The

indeterminate should be viewed as the spatial delay oper-
ator. Since is a cascade of simpler first-order sub-
systems, one can construct the signal flowgraph for each sub-
system and then realize the overall system as a cascade. The
response of subsystem to the unit impulse signal is
the sequence1, 1, 1, . Thus ,we should cascade the signal
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Fig. 3. Cellular multiplierless structure for the familyfH (z), i =
0; � � � ; 6g.

flowgraphs of the remaining
subsystems and feed them with the sequence1, 1, 1, . As
a concrete example, let us derive the signal flowgraph for the
case , . We need two subsystems of the form

and four subsystems of
the form , which is a total
of six cascaded subsystems. Fig. 2(a) presents the signal flow-
graph of the family generated by , where

, and . It can
be seen that there exists a large number of redundant nodes in
Fig. 2(a) that may be removed or simplified if the linear relation
between polynomials and is utilized. Fig. 2(b) shows
the first stage of simplification in which the redundant nodes
producing simple integer delays of the forms and are
removed from the first group of two layers, and the branch trans-
mittances are modified accordingly. The fully simplified signal
flowgraph, which is obtained by economization of the nodes of
the second group of four layers, is shown in Fig. 2(c).

The above development gives rise to a regular and multipli-
erless array structure for realization of the seven members be-
longing to , . An array structure
consisting of two types of cells is illustrated in Fig. 3. The struc-
ture is obtained by integration of each node of the signal flow-
graph of Fig. 2(c) together with its two incident branches into
a single cell. The nodes at the boundaries of the signal flow-
graph that possess only one incident branch are compensated
by an auxiliary branch that receives zero input values. Adoption
of this convention enhances the regularity of the resulting array
structure. There are two types of cells. The cells labeled with a
“ ” execute the transfer function

whereas the cells with a “” label operate according to

Fig. 4. General structure with configurable cells and boundary coefficients for
realization of filters belonging tofH (z), (N=2) + d integerg.

where and denote the transforms of the hori-
zontal and vertical inputs to the cells, respectively, and
denotes the transform of the cell output signal. Interestingly,
the structure of Fig. 3 is scalable to realize filters of higher orders
by adding extra cells in accordance with the generating function
(23).

Provided that a configurable mesh array is available, one can
obtain any member of the family , integer
by applying appropriate boundary signals to a properly config-
ured array structure. Fig. 4 shows a versatile configurable array
for this purpose. The type of each cell (or ) is determined
by the actual values of and . A procedure for determining
the boundary signals and the type of cells is given below.

definitions
Number of columns
Number of rows
Value of in in the delay chain

Cell type
procedure ConfigureArray

for to do

if then
else

endfor
for to do

for to do

if then
else

endfor
endfor

endprocedure
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Fig. 5. Schematic arrangement of cells.

For the definition of the cell coordinates see Fig. 4. In gen-
eral, the cells get configured according to the schematic given
in Fig. 5.

V. CONCLUSION

Halfband maximally flat FIR filters have found important ap-
plications in the areas of multirate systems and wavelet design
in recent years. Nevertheless, there has been little work on the
interrelation between different families of maximally flat filters,
especially those with nonsymmetric impulse response coeffi-
cients. In this paper, we have shown that the family of maximally
flat filters proposed by Baher is a universal family of maximally
flat FIR filters. Specifically, we proved that linear-phase filters
of even and odd orders, generalized halfband filters, and frac-
tional delay systems known as Lagrange interpolators all belong
to the family of Baher’s filters and are obtained by particular
choices of three parameters. Besides containing the aforemen-
tioned classes of special filters, Baher’s filters are particularly
useful because they yield tradeoff between the linearity of phase
response and the width of transition band for frequency-selec-
tive systems.

A simplified formula has been presented for the transfer func-
tion of the filters and its equivalence with Baher’s formula has
been established. We proved the identity using a modern auto-
matic technique for proving identities that involve binomial co-
efficients. A computer algebra system was used for automatic
generation of the proof. A byproduct of the computer-generated
proof is a three-term recurrence relation for the coefficients of
the transfer function. The recurrence may find application in
variable delay or variable order implementations where rapid
update of the coefficients for new values of delay and/or order
parameters is a highly desired feature.

We have also shown that the filters possess an explicit and
simple generating function. Generating functions are useful
tools that may lead to cellular systolic array structures for
digital filters. For a special subclass of Baher’s filters, a mul-
tiplierless array realization consisting of simple double-input,
single-output cells is possible. A procedure for designing such
array structures has been presented.
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