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Universal Maximally Flat Lowpass FIR Systems
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Abstract—The family of FIR digital filters with maximally  flatness constraints on the magnitude and group delay only at
flat magnitude and group delay response is considered. The the frequency, = 0. This, in turn, resulted in improved tran-
filters were proposed by Baher, who furnished them with an sition bandwidth and controllable group delayuwat= 0. Al-

analytic procedure for derivation of their transfer function. The th h Bah id imol d for det ining th
contributions of this paper are the following. A simplified formula ough baher provides a simple procedure for determining the

is presented for the transfer function of the filters. The equiva- transfer function, he does not give a compact formula in [5].
lence of the novel formula with a formula that is derived from  Selesnick and Burrus [7] generalized Baher’s approach by sub-

Baher’s analytical procedure is proved using a modern method for jecting the magnitude and group delay responses to differing
automatic proof of identities involving binomial coefficients. The number of flatness constraints. Their approach is based on the

universality of Baher’s filters is then established by proving that . .. - .
they include linear-phase filters, generalized half-band filters, and computation of Grébner bases, while they offer an analytic de-

fractional delay systems. In this way, several classes of maximally Sign technique for a special case. The passband group delay can
flat filters are unified under a single formula. The generating be specified by the designer in both the Baher and the Selesnick

function of the filters is also derived. This enables us to develop and Burrus approaches. On the other hand, the theory of maxi-
multiplierless cellular array structures for exact realization of a mally flat FIR fractional delay systems, which are also known as

subset of the filters. The subset that enjoys such multiplierless L int lat has b devel dind dently. V:
realizations includes linear-phase filters, some nonsymmetric agrange interpolators, has been develioped indepenaently. var-

filters, and generalized halfband filters. A procedure for designing 10US approaches toward Lagrange interpolators and other frac-
the cellular array structures is also presented. tional delay systems are listed in [10]. Since the ideal frequency

Index Terms—FIR digital filters, fractional delay systems, gen- response of fractional de'aY systems is of allpass form, th(? con-
erating function, interpolation, maximally flat magnitude filters, ~nection between Lagrange interpolators and lowpass maximally
multiplierless implementation, systolic arrays. flat filters is not intuitive. Hence, to our knowledge, there have
been no studies in the literature on a possible relation between
the two maximally flat systems.

In this paper, we unify Baher’'s nonsymmetric filters, linear-

E START by giving a brief account of explicit formulasphase maximally flat filters, and Lagrange interpolators using

and analytic techniques for derivation of transfer funca novel compact formula for the transfer function of Baher’s
tions of maximally flat FIR digital filters and then clarify thefilters. We develop a simple explicit expression for the class of
object of this paper. As is clear from the conventional usag@R systems denoteli v k., 4( ) that contains all the aforemen-
of the term “maximally flat” in the literature, we are not contioned filters. The expression is parametrized by the number
cerned with explicit formulas for filters that have some of theisf zeros atz = —1, K, the order of the systenV, and a pa-
degrees of freedom assigned to purposes other than vanishmaiiieterd that is related to the value of group delay.at= 0.
of frequency response derivatives. Transfer functions of lowve also specify the values of paramet&fsK, andd that re-
pass and highpass FIR digital filters of even order with exastilt in halfband solutions. The halfband solutions, bearing im-
linear phase and maximally flat magnitude response charactesrtant implications for design of regular wavelets, include the
istics are among the most well-known cases of optimal digitalell-known linear-phase halfband filters [4] and the recently de-
filters with closed-form formulas. The transfer functions can bgloped nonsymmetric halfband filter [11]. Furthermore, a gen-
expressed using the celebrated formula of Herrmann [1] or otleating function is derived for the entire family of filters. The
equivalent formulas [2], [3], [6]. Closed-form formulas are alsgenerating function enables us to develop multiplierless cellular
available for filters of odd order and bandpass filters as weltray structures for filters having integer values\f2 + d. We
[8], [9]. Nonlinear-phase maximally flat FIR filters were firstpresent a versatile cellular array structure for exact multiplier-
introduced by Baher [5], who relaxed the constant group del&ss realization of all linear- and nonlinear-phase maximally flat
requirements of Herrmann'’s filters by imposing simultaneous R filters with integer values o /2 + d.

The rest of the paper is organized as follows. In Section I,
the result of analytic design procedure of Baher is expressed as
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Il. SIMPLIFICATION OF BAHER'S FORMULA

Following the procedure for derivation of the transfer fun
tion of Baher's Nth-order maximally flat FIR filters, as de-
scribed in [5], the explicit form of the transfer function can b

written as
N—K

_ J _ N—j
o= b (1 1) <1+;'1) e
=0

This expression is related to the Bernstein form of the polyn

mial H(~) [12], [13]. The coefficientd; are given by

b= <]Z>AM @
k=0
where
_ o s~ [\ Dla+r—q)
a=cr 2 () netizy ©

1=0
The parameter: controls the group delay(w) of the filter

via the relatione = 7(0). Combining the above formulas, th

transfer function becomes

14 -1 KN-K j
(5) X

<N>
' k
j=0 k=0

.<—n%hx§f<j;k)

G-—kK! =
' MNoa+j5—kF—1)
F(a—i—i—'l)

L mINT /1 4 g1\ VK
() () e

Once the order of the filtelv, the number of zeros at= —1,

Hy k a(2) =

C_

e

1957

To establish the equivalence of (2) and our simplified for-
mula (6), we note that both formulas are sums of hypergeo-
metric terms. Recently, a systematic method has been developed
for automatic proof of identities involving binomial coefficients
Bn computers. The method has its origin in the work of Sister
Mary Celine Fasenmyer, who showed “how recurrences for cer-
tain polynomial sequences could be found algorithmically” (see
[15] and references therein).

o- Proof: To prove thab; = ¢;, we used a computer algebra
package that generates computer proofs of hypergeometric mul-
tisum identities [16]. The package successfully provided a re-
currence relation of the form

ij—‘r2de_1 - (j—N—2)Sj_2 =0 (8)
that is satisfied by the formulas for bdihandc;. Furthermore,
it can be easily verified (by hand calculation or a computer al-
gebra system) thaly = ¢co = 1 andb; = ¢; = 0for j < —1.
This means that under the initial conditions & = 1 and
S; = 0,7 < —1, running the above recurrence formula for
4 > 1, we get a sequence that is identical to the values gener-
ated byb; and¢;. This completely establishes thgt= ¢; for
all integers;. [ |

From (6), it can be observed that coefficienjstake on ra-
tional values for rational values @f Furthermore

cj(=d) = (=1)¢;(d) 9)
that is the magnitude af; is independent of the sign af The
plots given in Fig. 1 help us to get a rough grasp of the effect
of parametewd, or « equivalently, on the magnitude response
and group delay. Unlike linear-phase lowpass filters, a mono-
tonic magnitude response is no longer guaranteed. The plots are
provided for negative values @f Such choices ofl result in
reduced group delay in the passband. The magnitude response

K, and the value of group delay @t= 0, « are specified, the 5 jnvariant to the sign af, and the plots of Fig. 1(a) and (b) are
transfer function is uniquely determined by (4). Notations likgajid for both positive and negative valuesbinvoking (9), we
Hy, K, (%) will be used throughout this paper to emphasize thghd that changing the sign @famounts to reversing the sign of
dependence of the filter on the three parameters and provide §agameters; with odd indexes. In a Bernstein-form representa-
actual parameter values whenever necessary. The closed-fagn, this results in a transfer function of the form™ H(z~1),
formula of (4) can be used to compute the impulse response gthose magnitude response is identical to tha@f 6¢). In short,
efficientsh; of the filter or the values df; in the Bernstein-form we can generally write

representation (1). However, any attempt to unfold the relation- Hy x—a(2) = 2 NHy i a(z"Y).

ship between Baher’s filters and other maximally flat filters i o P .
hindered by presence of three-fold nested summations in Com%gnsequently, the group delay, x, «(w) satisfies the relation-
nation with Gamma functions and binomial coefficients. How?
ever, the expression fé; can be represented in a simpler form.
First, let us define a new delay parameter

N The above symmetric relations involving the transfer function
d=a-- () and group delay are desirable conveniences afforded by the

2
and a sequence of numbetsas newly defined parametet.

J N N
=S (3 (3) o
i=0 ¢ J—1

For noninteger values @f the binomial coefficients involved in

the above expression are evaluated using
i—1

™, K,—d(w) = N — 7, i, a(w).

I1l. UNIVERSALITY OF BAHER’S FILTERS
Having derived the simplified expression

L=t K N=K
HN,K,d(Z)=< 5 ) > 2
j=0 i=0

T—J . —0 i—
||_ i >1
z j+1’ b= N N
Y ={ i (7) AN N
@> 1, i=0 (1Y (2,d><%+f>
0 i < 0. ‘ J -t

Now we assert the following.
Theorem 1:¢; = b; for all integers;.

1— 21’ 14271 N=R=d
() () w
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Fig. 1. (a), (b) Magnitude response and (c) group delayffoe 10, K = 6,d € {—2,—-1.75,—-1.5,-1.25,—1,-0.75,-0.5,—0.25, G.

TABLE |
SPECIAL VALUES OF PARAMETERS IN BAHER'S FILTER AND THE FEATURES OFRESULTING SYSTEMS
N K d Other conditions | Resulting system

even 0 Type I linear-phase filter

odd 0 Type II linear-phase filter
N=2(mod4)| 5 +1 0 Half-band linear-phase filter

even 2+ 1 [integer | ¥ + dodd, Jd| < ¥ [ Generalized half-band filter

0 real Fractional delay (Lagrange interpolator)

for the transfer function of Baher’s filters, we are in a positioAs is shown in [14], using the binomial expansion theorem, it
to establish that for certain choices of the parameters, the foan be easily seen thai is the coefficient of thgth power of
mula yields maximally flat linear-phase filters, generalized half: in the power series expansion of the product

band filters, or Lagrange interpolators. The use of paramkgter N/2 N/2

which was introduced in the preceding section, instead of the SR S

original parametery used by Baher, is a matter of preferenc@lternatively, the above product can be expanded as
to emphasize the symmetry properties discussed in Section II.

N/2
Table | presents some special values of the parameters and the (1- xQ)N/Q _ z/: (_1)j ﬁ L2 (12)
corresponding type of the transfer function. It can be seen that o —~ 3
Baher’s filters include a wide class of maximally flat FIR filters. ) =
The proofs and remarks are provided next. This yields the relationship
N
A. N Evend = 0 (= d (12 2], Geven 13
Settingd = 0, the group delay at = 0 becomesV/2 sam- ’ 2
ples. This is the same situation as a type | linear-phase filter 0, J odd.
of the same order. Here, we show that, in fatk, K,0(z)is a Hence, the transfer function can be expressed using the bino-
linear-phase filter. Substituting= 0 into (6), we have ) o N .
' N N mial coefficients j as in (14), shown at the bottom of the
J
Cjla=o = Z (-1~ [ o o (11) next page. This means that fdr = 0, only filters with an
Pt i j—1 even number of multiple zeros at= —1 are obtained. The
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right-hand side of (14) is identical to Miller’s formula for linear-wherelV is an even integer, antis a positive or negative integer

phase maximally flat filters [2], [6]. that should be chosen so that its magnitude is lessAh@and
the parity of(N/2) + d is odd. More precisely, we have [11]

B. Nodd,d =0

Here, we show that for odd values of, the choice ofl =

0 results in linear phase. This means that Baher's filters cover

i i - _ e N

inear-phase maximally flat filters of odd order as well. We show =z - +dodd N even

thatHx x o(z) is asymmetric polynomial in—! for all integer

values ofN. First, note that a Bernstein-form polynomiakint

Hy (vy2+1,a(2) = Hy (v/2)+1,a(=2)

N , N D. Lagrange Interpolators
Fiz) = Z o <N> <1 -zt )’ <1 + z_1> ’ (15) The versatility of Baher's filters may be further appreciated
= J 2 2 by considering the cas€ = 0. Absence of azero at= —1
implies that the resulting system might not be a frequency-se-
lective filter. Here, we show that the system is in fact a Lagrange
interpolator in this case.
As is pointed out in [10], the transfer function of a Lagrange
interpolatorL(=) of order N is the solution to

is symmetric if and only itz; = 0, j odd. This can be readily
verified by subjecting?'(») to the condition

F(z)—2zNF(z1) =0 (16)
—-D

and writing down the resulting set of linear equations for co- Lz)=2"", D=01,,N. (18)

efficientsa;. On the other hand, setting the coefficients with

even indexes to zero results in an antisymmetric polynomi&h. other words, the interpolator should reduce to the trivial in-

Following the same line of reasoning as the preceding substeger delay for integer values of delay parameferWe now

tion and employing the generalized binomial theorem that hol@Bow thatH o, «(z) satisfies the above set of equations if we

for noninteger powers as well, the coefficientsare identified setD = (N/2) + d. Specifically, we show the following.

to be the coefficients of thgth power ofz in the power series  Theorem 2: Hy, o,4(z) = z~(N/2+4) for (N/2) + d in-

expansion of 1 — x2)/2, This holds, regardless of the parityteger.

of NV, as long asl = 0. Hence, we have Proof: For integer values of N/2) + d, the value of

(N/2) — dis also an integer, and hence, we have

¢jla=o =0,  jodd (17)

NS i (Y oaY (Y
T = — J—e o5 5
This shows that the resulting maximally flat filter of odd order Hy,0,a(%) Z Z (1) < 2 i ) < 2 . )
i . .. j=0 =0 J 4
satisfies the linear-phase condition (16).

1= 27\ (142 \"

C. Generalized Halfband Filters ' < 2 ) < 2 )

The important class of halfband maximally flat filters are 1—21 14271 (N/2)+d
completely covered by Baher’s filters. This includes the well- L + 2
known linear-phase case [4] that is a special case of the recently B L (N/2)—d

. . . . .. ]_ — 2z 1 ]_ + z 1 ( / )

studied nonsymmetric case [11]. Our simplified formulais iden- . < M © )
tical to the transfer function of generalized (possibly nonsym- 2 2
metric) halfoand filters derived in [11] fo x (n/2)+1, (%), = 2~ (N/2)+d) »

( <1 +2z—1>"’N§/2 <%> <_ <1—2z_1>2>j

=0
2\ (N=K)/2)=j

1 V—l
<< tz )) , K even
2
14,1 K41 (N—=K-1)/2 N 1 -1 2\ J
5 (3)0E))

i=0

LN (VK12
.<<1+22 ) ) , K odd.

Hy i, o0(z) = (14)
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Thus, we have proved thdiy o 4(z) is the Lagrange inter- for generating functions is evaluation of expressions of the form
polator for all real values of. It is noteworthy that represen-(1 — z)G y, 4(x, ). Thus, we continue as

tation of Lagrange interpolators in the Bernstein form using

Hy. 0,4(2) is a novel expression for these fractional delay sys- (1—2)Gn, oz, 2)

tems. oo oo
= Z Hy nia(z)z’ — Z Hy N—it1,q(z)z"
E. Impulse Response Coefficients i=0 i=1

In this subsection, we give an explicit formula for the im- =Hy N4 +§ :
pulse response coefficientg, £ = 0,1, - - -, IV of the universal =
: " N —k .
maximally flat lowpass filtet x, i, a(z) = > 1_o ez ™. Ex- (Hy n—ialz) — Hy noigna(2). 2. (21)

panding (10), and after some routine algebraic manipulations,
we get_(19), shown at the_ bottom of the page. The formula g'vf“J%ing (10) and the definition af;, the right-hand side can be
numerical values of; using the three parametels, K, and
written as
d. It can be used to design all types of maximally flat systems

listed in Table I.
(1 — 37 GN

IV. GENERATING FUNCTION AND MULTIPLIERLESSARRAYS = ¢ <

N =9} 1_ Z_l 7
Framc LSS )fz@( )

The object of this part of the paper is to derive a generating o=t
function for the family of filters{Hx, x, 4(#)} and then de- 142" z
velop multiplierless cellular structures based on it. We will see 2 !
that such structures are possible only for special values of 00 _ —1y\ N—i

) - 1—2z" 14z

for a givenV. The general method for generation of cellular Z 5 z;. (22)
structures from a generating system is discussed elsewhere [17]. =0

However, we provide a step-by-step exposition to the subject for
the sake of self-containment. From the binomial expansion theorem, it can be verified that

the right-hand side of the above equation is the power series
expansion of

A. Generating Function

Consider the famil{ Hx ~_; a(2),i = 0,1, ---} of Baher's T 1 1\ (N/2)=d
filters. The family includes all possible maximally flat FIR fil- < . - )
ters of orderNV with fixed group delay parametet The sim- 2 2
plified formula presented in Section Il can be directly used to 14271 1—=2
compute the transfer functions for< ¢ < N. Note that for < 2 - 2
values ofi outside the intervgD, V], i.e., forK' < 0, usage of
(10) generally results in a rational transfer function that is n@onsequently, we obtain (23), shown at the bottom of the page,
an FIR system. Now, we can define a generating function of thhich is the closed-form expression 81y «(z, z). The gener-
form ating function is rational if and only ifN/2) + d is an integer.
In that case, the members of the family with> N, i.e., those
) o with negative values ok, become trivial systems of the form
G, a ZHA N (20) 2~ ((N/2+4) For noninteger values ¢fV/2) + d, however, the
members with a negativk become IIR systems. In any case,
for the family of filters. We wish to derive an explicit expressiorthe focus of this paper is the members whéSparameters are
for G, a(x, z). A common trick for derivation of closed formswithin the interval[0, N].

—1)(’\’/2)4-(1

k=0,---,N. (19)

1 + Zfl 1— Zfl (N/Q)_d 1 + Zfl 1— Zil (N/Q)'i’d
+x x
2 2 2

(23)

1—=x
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Fig. 2. Signal flowgraph for the familyHsc_;,_1(2),i = 0,---,6}.

B. Multiplierless Arrays indeterminater should be viewed as the spatial delay oper-
ator. SinceGGy 4(x, z) is a cascade of simpler first-order sub-

In the case of rational generating functions, a signal floveystems, one can construct the signal flowgraph for each sub-
graph for the family of filters can be obtained by writing dowrsystem and then realize the overall system as a cascade. The
the difference equations obtained by plugging the spatial unéisponse of subsystein(1 — «) to the unit impulse signal is
impulse signal into the discrete-time syst€m; (x,z). The the sequencél, 1, 1,---}. Thus ,we should cascade the signal
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Fig. 3. Cellular multiplierless structure for the famifyHs 6_;,—1(2), 1 =

0.2 o). S e e e e

ini _ — Fig. 4. General structure with configurable cells and boundary coefficients for
zz\é)vggzt%r]rssogtnr:jefre(eerga'[';]nel-rr]ngvjxt/f? ihe?e;u(gnvc/ 6.2? Id)}_ Aj\\; reglization of filters belonging t & N,gK,d(z), (N/2)+d integer{ .
a concrete example, let us derive the signal flowgraph for the
caseN = 6, d = —1. We need two subsystems of the formwvherel/,, (=) and U,(z) denote the: transforms of the hori-
(1 + 2 1)/2) — z((1 — 2~ 1)/2)) and four subsystems of zontal and vertical inputs to the cells, respectively, afd)
the form (((1 + z~1)/2) + z((1 — 2~1)/2)), which is a total denotes the transform of the cell output signal. Interestingly,
of six cascaded subsystems. Fig. 2(a) presents the signal flé structure of Fig. 3 is scalable to realize filters of higher orders
graph of the family generated b (z, z), where P(z) = by adding extra cells in accordance with the generating function
(14271)/2),andQ(z) = P(z)—2z~* = ((1—z"1)/2.Itcan (23).
be seen that there exists a large number of redundant nodes iRrovided that a configurable mesh array is available, one can
Fig. 2(a) that may be removed or simplified if the linear relatiofbtain any member of the famiy v i, a(2), N/2+d integer
between polynomial®(z) andQ(z) is utilized. Fig. 2(b) shows by applying appropriate boundary signals to a properly config-
the first stage of simplification in which the redundant nodeged array structure. Fig. 4 shows a versatile configurable array
producing simple integer delays of the forms! andz~2 are for this purpose. The type of each cel or —) is determined
removed from the first group of two layers, and the branch trarldy the actual values af and V. A procedure for determining
mittances are modified accordingly. The fully simplified signaihe boundary signals and the type of cells is given below.
flowgraph, which is obtained by economization of the nodes of
the second group of four Iaygrs, is.shown in Fig. 2(c). _ definitions
The above development gives rise to a regular and multipli- ; Number of columns
erles_s array structure for realization of the seven members bey Number of rows
longing to {H i, ~1(2), ¢ = 0,---,6}. An array structure ¢ \ijye of s; in = in the delay chain
cons.|st|ng qf two types of cglls is illustrated in Fig. 3. _The struc- ¢, ; Cell type
ture is obta}lned by mtegrauon of each qodg of the signal f!OVﬁ'rocedure ConfigureArray N, K, d)
graph of Fig. 2(c) together with its two incident branches into ; . 4
a single cell. The nodes at th_e b_oundaries of the signal flow-; __ n _ g 41
graph tha_tl_possess mlﬁl :)ne |r_IC|dent br_ancfg arle con/;gen?atqgr i = 1]{70 7 —1do
y an auxiliary branch that receives zero input values. Adoption .. .
of this convention enhances the regularity of the resulting array fix < +dthens; 1
structure. There are two types of cells. The cells labeled with a  €/S€si < 0

—" execute the transfer function endfor
fori: =1toldo

for j =1toJ do
L. . N
ifi+5 < 5+d+1thenc7¢7j ——
elsec; ; «— +
endfor
endfor
Y (z) = Up(z) P(2) + Uy(2) Q(2) endprocedure

Y (2) = Un(2) P(2) - Un(2) Q(2)

whereas the cells with a+” label operate according to
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0 We have also shown that the filters possess an explicit and

Input r

By

N/2+d

(1]

> (2]

> (3]

. (4]

(5]
(6]

A 4

Fig. 5. Schematic arrangement of cells.
(7]

For the definition of the cell coordinatés ;) see Fig. 4. In gen- .
eral, the cells get configured according to the schematic giver{ ]
in Fig. 5.
[9]
V. CONCLUSION

[10]
Halfband maximally flat FIR filters have found important ap-

plications in the areas of multirate systems and wavelet desigiil
in recent years. Nevertheless, there has been little work on ”I?z]
interrelation between different families of maximally flat filters,
especially those with nonsymmetric impulse response coeffif3]
cients. In this paper, we have shown that the family of maximally[l4]
flat filters proposed by Baher is a universal family of maximally
flat FIR filters. Specifically, we proved that linear-phase filters[15]
of even and odd orders, generalized halfband filters, and frac-
tional delay systems known as Lagrange interpolators all beIonBG]
to the family of Baher’s filters and are obtained by particular
choices of three parameters. Besides containing the aforemel]
tioned classes of special filters, Baher's filters are particularly
useful because they yield tradeoff between the linearity of phase
response and the width of transition band for frequency-selec-
tive systems.

A simplified formula has been presented for the transfer func-
tion of the filters and its equivalence with Baher’s formula has
been established. We proved the identity using a modern au*
matic technique for proving identities that involve binomial ca
efficients. A computer algebra system was used for automa
generation of the proof. A byproduct of the computer-generat
proof is a three-term recurrence relation for the coefficients
the transfer function. The recurrence may find application
variable delay or variable order implementations where ra
update of the coefficients for new values of delay and/or ord
parameters is a highly desired feature.

simple generating function. Generating functions are useful
tools that may lead to cellular systolic array structures for
g digital filters. For a special subclass of Baher's filters, a mul-
tiplierless array realization consisting of simple double-input,
single-output cells is possible. A procedure for designing such
array structures has been presented.
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